

Polypropylene

Processing Guide Polypropylene Fiber & Slit Film Applications

Processing Guide Polypropylene Fiber & Slit Film Applications

Polyolefin is a general term used to describe a family of polymers derived from a particular group of base chemicals e.g. olefins. The Polyolefin family includes polypropylene, as well as polyethylene. Polypropylene is made by building up long chains of propylene monomers.

Due to its inherent nature of chemical resistance, low density, outstanding property balance and process versatility, polypropylene has a broad range of applications such as flexible fibers for carpet, carpet backing, and personal hygiene products.

Formosa has two separate and unique gas phase polypropylene polymerization processes. These processes compliment each other and yield high degree of isotacticity (for physical properties) and a degree of Xylene Soluble Extractables for smooth and continuous processability. Formolene[®] Polypropylene grades are used in a variety of extrusion applications including Slit Films, Strapping, Straws, CF & BCF, as well as unique non-woven staple fibers.

Polypropylene grades for the fiber market sector range from reactor grade high MFR PP for BCF in rugs and carpets, to staple for geotextiles and non-wovens, to slit tape for raffia and strapping applications, to Controlled Rheology PP grades for fine denier upholstery yarns. Details of each grade can be found at www.fpcusa.com.

Formolene Fiber & Extrusion Grades				
Applications	Grade	Comments		
Slit Tapes	1102KR, 1102L, 1103K, 1112H	Excellent Water Carryover		
BCF-Face yarn	41010	Excellent Gas Fading		
Carpet Backing	1102KR & 1102K	Excellent Shrinkage & Processibility		
CF Yarn & Geotextlies	5101M	Excellent UV Resistance		
Cordage & Rope	1102H & 1102KR	Excellent Thermal Stability & Strength		
Netting	1102K & 5181K	Excellent grade for thin gauge		
Staple Fibers	4101M	Excellent balance of tenacity & softness for consumer products		
Strapping	5100H	Fractional MFR Homopolymer PP		
Compounding Profile (Large Part Extrusion)	6501A	Low MFR Copolymer		
	6600A	Fractional MFR Copolymer		
Straws	5181K	Homopolymer PP		

Typical Fiber & Extrusion Product Properties

	BCF (Medium MFR PP) (20)	BCF (High MFR PP) (35)	Slit Film (3-4 MFR)	Straw (4-6 MFR)	Staple Fibers (6-8 MFR)
Denier	~1800	~600-1800			>500,000
DPF	18-20	2.5-18			6-8
Melt Temperature (°C)	230-240	200-215	220-240	235	230-240
Chill Roll Temperature (°C)	N.A.	N.A.	~20	N.A.	N.A.
Draw Ratio	>2.9	>3.0	>6-8		>3

Processing Guide Polypropylene Fiber & Slit Film Applications

Slit Film Applications					
Problems Observed	Possible Causes	Corrective Actions			
Excessive Water Carryover	 Processing temperature too high Water Quench bath temperature too high 	 Adjust the temperature profile in extruder zones Lower the quench tank temperature Review the concentrate & regrind level Rearrange the mechanical brush positions. Slow Down the speed 			
Tape/yarn breakage	 Melt Temperature too low Godet temperature too low Draw speed too high 	 Up the melt temp & optimize the extruder temperature profile; also review the godet temperature . Review the A/O level in PP Alter the draw ratio Check the regrind level. 			
Excessive Shrinkage	Heat set temperature too lowDraw ratio too high	Alter the draw roll temp. to reflect higher set temperature.Reduce the draw ratio.			
Low Tenacity	PP-MFR too highResidual elongation	 Review the MFR of the starting PP; In general, the lower the MFR->higher the tenacity, however at the expense of higher back-pressure. Adjust (^) the draw ratio. Lower the draw temperature. 			

Bulk Continuous Filaments Applications					
Problems Observed	Possible Causes	Corrective Actions			
Yarn Breakage	 Draw ratio too high Godet Temperature too low Process Temperature too low 	 Either increase the godet temperature or reduce the draw ratio. Optimize the temperature profile Check the A/O level in resin Check the color concentration level Alter the spin draw temperature 			
Color of the filaments	 Improper mixing of the components (concentration + resin) Process temperature too high 	 Check the compatibility of two components from MFR Check the additive levels Pre-blend PP with concentrate 			
Low Tenacity	 PP-MFR too high Process Temperature too high 	 Attempt slightly lower MFR Check the A/O levels Increase the draw ratio Alter process & spin draw temperatures 			
Bulk Characteristic	Heat setting temp. too lowTension in the final region too high	Increase the heat set tempuratureAlter process/SD temperature			

9 Peach Tree Hill Road, Livingston, NJ 07039 • www.fpcusa.com

©2006 Formosa Plastics Corporation, U.S.A. Revised: June 2006